
RESUME
Jukka Jylänki

In short:
• Born in 1985.
• Software Engineer with a strong focus on C++,

graphics programming, Computer Science and
Mathematics.

• Holds a Master's Degree in Mathematics from the
University of Oulu, Finland.

• Currently lives in Oulu.
• Webpage at http://clb.demon.fi/

• Contact address

Work Experience

2008-Present Senior Programmer and a Team Lead
At LudoCraft Ltd.
• Technology Lead on the RealXtend Tundra project.
Designed the system architecture and organized
development teams.
• Technical Programmer on AirBuccaneers, a
multiplayer airship pirate game
released on Steam.

(PC Gamer: 80 / 100)
• Technology Lead on the Project

Room virtual meeting space software. Implemented voip and video streaming,
and webcam and screencast sharing.
• Special effects supervisor on the Miivies project. Developed character
systems, shaders and special effects.
• Lead programmer on the GameBridge and Sandbox educational game
projects. Wrote engine and gameplay code.

2005-2008 Senior Programmer, game engine developer and AI
developer at Farmind Ltd.
• Puzzle Scape, PSP: Ported and re-developed a Direct3D9-based

graphics and game engine for use on the PSP platform.
• World Series of Poker 2008, Nintendo DS: Co-developed a game

engine for the NDS platform. Implemented the AI opponents.

http://clb.demon.fi/
http://www.miivies.com/
http://www.ludocraft.com/games/airbuccaneers

Education

2004 Graduated in Finnish upper secondary school, Oulaisten Lukio, with a GPA of 9.7/10, and four
grades of Laudatur in A-level Mathematics, English, Swedish and Physics/Chemistry. Received a
scholarship prize for excellence in natural sciences.

2004 Served the mandatory Finnish military service in nine months in Rovaniemi LapItr as Military
Police, attaining the rank of Corporal.

2005-2007 Studied at the Department of Information Processing Science at the University of Oulu.

2008 Studied a semester of Computer Science and Mathematics at the University of Newcastle in
Australia.

2011 Graduated B.Sc. and M.Sc. from the Department of Mathematics at the University of Oulu,
with a grade of 5/5. Received a scholarship prize from the Tauno Tönning Foundation for
providing novel research in the Master's Thesis “On Check Character Systems over Algebraic
Groups”.

Technical Skills

Highly skilled with: C/C++, Direct3D9/10/11, GLES2, OpenGL 3.1, Cg/GLSL/HLSL, TCP/UDP, Qt,
Ogre3D, Visual Studio, SVN, Git, 3D mathematics, algorithms and data
structures, parallel programming, Android NDK.

Experienced with: C#, SSE/SIMD, Boost, HTML/XML/JSON/CSS, JavaScript, Java, Emscripten, .Net
Framework, Unity 3D, Mercurial, PHP, MySQL.

Some experience with: Assembly, Python, WebSockets, WebGL, ARM NEON, XCode and OSX+iOS
programming, C++/CX.

Achievements

• The author of MathGeoLib, an open source C++ library for 3D matrix-vector algebra and
geometry manipulation. Available under the Apache 2 license from github repository
juj/MathGeoLib. Runs on Windows, Linux, Mac, Android, iOS, Windows 8 RT and cross-
compiled to JavaScript.

• The creator of kNet, an open source C++ networking library for games and real-time
streaming applications. Runs on Windows, Linux, Mac and Android. Implements reliable
UDP, message prioritization and multichannel messaging. Available at gtithub in the
repository juj/kNet under the Apache 2 license.

• Working as a contributor to Emscripten, a C++ → JavaScript compiler, providing a
continuous testing infrastructure, implementing new features like EGL support, CMake
toolchain and Visual Studio integration, and maintaining Windows support for it.

• Developing a cross-platform GPU programming interface called gfxapi.
• Self-published research A Thousand Ways to Pack the Bin - A Practical Approach to Two-

Dimensional Rectangle Bin Packing.
• Master's thesis available online (in Finnish).

http://clb.demon.fi/gfxapi/
https://github.com/kripken/emscripten/wiki/Using-Emscripten-from-Visual-Studio-2010
https://github.com/kripken/emscripten/wiki/EGL-Support-in-Emscripten
https://github.com/kripken/emscripten
https://github.com/kripken/emscripten
https://github.com/juj/kNet
http://clb.demon.fi/Gradu_Jylanki_final.pdf
http://clb.demon.fi/files/RectangleBinPack.pdf
http://clb.demon.fi/files/RectangleBinPack.pdf
http://clb.demon.fi/MathGeoLib/

PORTFOLIO
Jukka Jylänki

When I don't write code at work, I most often write code at home. This is a sampling of the
different projects I have developed.

I have a long history of writing code. The earliest projects are from somewhere around 1997, about
the time C++ was being standardized. Graphics programming was written using assembly routines
directly to display framebuffer in DOS. Images above showcase different demo effects, a worm
game, a 3D function graph plotter, and a planetary simulator. I started programming somewhere
around 1997.

I can understand spec sheets for low-level hardware devices, and write programs to utilize them. I
have also programmed Polar heart rate monitors, Arduino microcontrollers and NMEA-based GPS
devices over a Bluetooth serial port data link.

I have a strong grasp of the Minimax
algorithm, along with Alpha-Beta
heuristics, iterative deepening and
transposition tables, and can develop
and maintain an implementation that
performs game tree searches. In the
picture is a Direct3D 7-based chess
game I developed in 2004, which
includes a Chess AI that explores
about 500K game nodes per second
on a single core. I am also familiar
with Monte Carlo techniques in the
context of Computer Go.

In 2007, I wrote a demo game for an University course to showcase
my game engine then-in-development. It included a Direct3D9
renderer with particle systems, normal mapping, shadow mapping
and bitmap-based font rendering.

I am familiar with the implementation details of various computational algorithms. I understand
the Big-O notation, and can manipulate it with formal rigor. I have experience with implementing
data structures e.g. for priority queues and search trees, and have no problems with running
mathematical proofs with induction, or understanding the difference between normal and tail-free
recursion.

I am comfortable with implementing computer search methods, such as the A* algorithm for
pathfinding. The image on the side shows the A* search applied to solve the sliding puzzle.

I can do parallel programming, and am familiar with parallel
constructs such as mutexes, semaphores, critical sections, as
well as low-level synchronization primitives such as atomic
increments and compare-and-exchange operations. I
understand the concepts of wait-free and lock-free.

In 2009, I took part in one of “Al Zimmermann's Programming
Contents” on combinatorial optimization, and implemented a
massively distributed software to solve a hard problem on
discrete integer optimization.

I led the contest for three
months, but eventually finished
in the fourth place. At the best
time, I had over 300 computing
cores distributed over the
internet searching over the
solution space.

I took apart my friend's 18 piece
burr puzzle (pirunnyrkki), and had to write a computer program with a backtracking solver to put it
back together, since my friend had no knowledge of how to assemble it.

I am familiar with GPUs, and I understand how to implement lighting equations in shaders, with
effects like specular lighting, reflection mapping, tangent-space light calculations, normal mapping
and cel-shading (toon rendering). I can implement rendering pipelines for framebuffer effects like
glow, bloom or HDR.

I have written a solver for the Eternity 2
puzzle (and can safely conclude that it is
impossible)..

… implemented Median Cut (a
true-color to palettized image
quantizer)...

… coded real-time Marching
Cubes (an isosurface to
polygonal mesh -converter)...

http://fr.eternityii.com/
http://fr.eternityii.com/
http://fr.eternityii.com/

 True-color RGB222 (2 bits per color channel)

… written a perception-aware dithering color quantizer....

… an automated sports bet arbitrager ...

… a Cyclic Coordinate Descent, and a
Jacobian Transpose -based IK solver...

 … a clone of the “Hey, That's My Fish!”
board game with a Minimax AI ...

 … and implemented methods for tight
shadow caster frustum fitting...

… developed a real-time SSE2-optimized Mandelbrot and Julia fractal viewer...

… and tried my hands at writing a real-
time Raytracer, with kD-trees, and SSE
optimizations. Performs at about 1M
primary rays/sec on a dual-core laptop.

I wrote a paper on two-dimensional right-oriented
rectangular bin packing. It was supposed to be my
topic for my master's thesis, but sadly it was
rejected. The algorithms in my paper are now used
as a basis for several bin packers around the web:

– freetype-gl
– SpriteMapper
– Bitmap Font Generator
– Urho3D Rendering Engine
– ps_scripts

and even in two commercial software packages:
Zwoptex and Texture Packer Pro.

A series of blog posts and the original paper is
available on my website: “Even More Rectangle Bin
Packing”.

I am the creator of the open source kNet networking library, which is a low-level network transport
layer for streaming messages e.g. in games. It is written in C++, can be configured to run on top of
TCP or UDP, and works on Windows, Linux and Mac.

– https://github.com/juj/kNet .
– doxygen-generated kNet documentation pages.

Also, I am the author of MathGeoLib, an open
source C++ library for matrix-vector math and
primitive geometric object manipulation. The
code is hosted at github repository
juj/MathGeoLib.

… and the author of gfxapi, a 3D graphics
programming interface that targets an
extremely wide set of platforms: Win7,
Win8, Win8RT, Win8Phone, Mac OSX,
iOS, Android, HTML5, Chrome, Opera,
Firefox, Safari, Chrome Web Store and
Linux. It uses Direct3D11, OpenGL 3.2,
OpenGL ES 2 or WebGL, depending on
the target platform.

Find live web demos of gfxapi here.

http://clb.demon.fi/gfxapi/samples.html
http://clb.demon.fi/gfxapi/
https://github.com/juj/kNet
https://github.com/juj/MathGeoLib
http://clb.demon.fi/MathGeoLib/
http://clb.demon.fi/knet/
http://clb.demon.fi/projects/even-more-rectangle-bin-packing
http://clb.demon.fi/projects/even-more-rectangle-bin-packing
http://clb.demon.fi/projects/even-more-rectangle-bin-packing
http://clb.demon.fi/projects/even-more-rectangle-bin-packing
http://www.texturepacker.com/features/
http://zwoptexapp.com/
https://bitbucket.org/ismailkeskin/ps_scripts/src/b5d396772e6c/Export%20Layers%20to%20Sprite%20Sheet.jsx
http://code.google.com/p/urho3d/
http://www.ogre3d.org/forums/viewtopic.php?f=11&t=65247
http://opensource.cego.dk/spritemapper/doc.html
http://code.google.com/p/freetype-gl/

Most recently, I have been working on
an Asteroids-like game for the Tegra2
tablets, with Android NDK (C++),
GLES2 and a strict 60fps-no-hiccups
target.

And if it happens that I am not doing
programming, I most often play Go at
a local club. I hold an European Go
Federation rank of 3 kyu, and I was
the champion of the Lightning
tournament at the London Open Go
Congress 2010.

What would you rather see me do?
Let me know.

