
An Exact Algorithm for Finding Minimum Oriented Bounding Boxes

Jukka Jylänki∗

2015/06/01

Figure 1: Fast computation of the minimum volume OBB of a convex polyhedron. Left to right: Dragon: 2731149 vertices (2531 on the hull)
in 1.3 seconds; Lucy: 14026670 vertices (5262 on the hull) in 5.6 seconds; a bear: 3105537 vertices (6628 on the hull) in 7.3 seconds.

An optimized C++ implementation of the algorithm can be found here, or try it live on a web page here.

Abstract

A new method is presented for computing tight-fitting enclosing
bounding boxes for point sets in three dimensions. The algorithm
is based on enumerating all box orientations that are uniquely de-
termined by combinations of edges in the convex hull of the in-
put point set. By using a graph search technique over the vertex
graph of the hull, the iteration can be done quickly in expected
O(n3/2(logn)2) time for input point sets that have a uniform dis-
tribution of directions on their convex hull. Under very specific
conditions, the algorithm runs in worst case O(n3 logn) complex-
ity. Surprisingly, empirical evidence shows that this process always
yields the globally minimum bounding box by volume, which leads
to a conjecture that this method is in fact optimal.

CR Categories: F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Geometrical
Problems and Computations; I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Geometric Algorithms;
Object representations

Keywords: computational geometry, bounding box, OBB

1 Introduction

Given a three-dimensional set of points, a fundamental problem in
computational geometry is to find the smallest possible oriented
bounding box (OBB) that contains all the points in the input data
set. This problem arises widely in applications in computer graph-
ics [Schneider and Eberly 2002], physical simulations [Ericson
2004] and spatial data structures [Gottschalk et al. 1996], as well as
other areas, such as computer-aided design [Chan 2003] and even

∗e-mail:jujjyl@gmail.com

in medicine [Bartz et al. 2005]. Common uses in computer graphics
include approximating a complex shape with a simpler OBB for the
purposes of faster broad phase intersection testing, or for perform-
ing culling of renderable objects that need to be sent to the GPU.

OBBs have several desirable properties that make them useful for a
variety of scenarios. They are convex and consist of three pairs
of parallel planes, called slabs. In their local coordinate frame,
they are representable as axis-aligned bounding boxes (AABB) or if
scaled, as the unit cube. As such, intersection and distance tests be-
tween OBBs and other shapes can be implemented efficiently [Kay
and Kajiya 1986] [Schneider and Eberly 2002, pp. 394, 624, 639].
OBBs also provide generally tighter fits than the simpler bound-
ing spheres or AABBs. However, unlike spheres and AABBs, for
which minimum volume enclosing shapes can be found in linear
time [Megiddo 1982] [Welzl 1991], the major shortcoming with
OBBs to date has been the difficulty of computing minimum vol-
ume OBB representations due to a lack of effective algorithms for
the task.

In this paper, new analysis and progress is presented to help solve
the minimum volume OBB problem. A new algorithm is intro-
duced, which has considerable practical merit:

1. Exact: The algorithm runs through a discrete process without
use of numerical optimization or iteration over the continuum.
As a result, the method is stable and predictable.

2. Simple: Unlike previously published results, the new method
is relatively easy to implement and it is possible to program
it in different variants to balance a tradeoff between desired
implementation complexity versus runtime complexity.

3. Fast: Both the time complexity and the constant time factors
in the algorithm are low, which make it a practically viable
solution.

4. Enumerative: The new algorithm is implementable as read-
only sequential traversal over sets of edges, so it is catego-
rizable as embarrassingly parallel and therefore suitable for
processing large data sets as well.

5. Optimal? Based on extensive numerical searches over both
synthetic and real world test cases, no example has yet sur-

http://clb.demon.fi/MathGeoLib/nightly/
http://clb.demon.fi/minobb/test/

faced where the new algorithm would not have found the op-
timal minimum volume box. However, at this point, no formal
proof of the optimality of this algorithm is known.

The next section of this paper will first introduce the relevant earlier
research. In sections 3 and 4, the main problem will then be grad-
ually unwound in a bottom-up manner by presenting mathematical
analysis of each of the individual subproblems one at a time. These
results will all be brought together in the main algorithm finally in
section 5. Last, sections 6 and 7 conclude with experimental results
and practical remarks.

2 Related Work

In the past, only few papers have been published with theoretical
advances on the minimum volume OBB problem. In the 2D case,
it is known that the minimum area rectangle enclosing a convex
polygon must be flush with one of the polygon edges [Freeman
and Shapira 1975]. The rotating calipers method [Toussaint
1983] is a linear time algorithm that builds on this characterization.
For the 3D case, the only currently known property is the following:

Theorem 2.1. A box of minimal volume circumscribing a convex
polyhedron must have at least two adjacent faces flush with edges
of the polyhedron. [O’Rourke 1985] �

The term of being flush with an edge here means that a face of
the box contains every point of that edge. Based on this prop-
erty, O’Rourke developed a O(n3) time algorithm which performs
a type of rotating calipers search for each pair of edges on the hull.
However, their method involves solving roots of a sixth degree
trigonometric polynomial numerically, and in addition the com-
plexity is so high that the method is often considered impracti-
cal. Unfortunately it also looks like this work has later become
misinterpreted in literature in several published books, which in
turn has led to misinformation in online sources [GameDev.Net],
[StackOverflow], [Troutman]. To illustrate and clear up the con-
fusion, consider the following quotes:

• “O’Rourke (1985) shows that one box face must contain a
polyhedron face and another box face must contain a polyhe-
dron edge or three box faces must each contain a polyhedron
edge.”” [Schneider and Eberly 2002, p. 806]

• “[...] given a polyhedron either one face and one edge or
three edges of the polyhedron will be on different faces of its
bounding box.” [Ericson 2004, p.107]

• “The paper [O’R85] shows that the minimum-volume OBB
for a convex polyhedron must (1) have a face that is coincident
with a face of the polyhedron or (2) be supported by three mu-
tually perpendicular edges of the polyhedron.” [Eberly 2006,
p. 624] (see also [Geometric Tools LLC])

The first quote is possibly correct, however this does not follow
from theorem 2.1 or the treatise in [O’Rourke 1985]. In fact, if it
did, then it would directly prove the optimality of the new algorithm
presented in this paper. The second claim on the other hand is not
correct. Note the very subtle difference between the first two quotes
that makes them different. It is possible that two adjacent faces of
a box are flush with the same edge of a polyhedron, in the special
case that this polyhedron edge coincides with an edge of the box.
This counterexample will be called category D, and it will be pre-
sented in more detail later in section 5. See also figure 2. Finally,
the third statement is likewise a misinterpretation of O’Rourke, and
mathematically incorrect. The correct analysis will be presented in
section 3.5.

Given that the problem has resisted attempts of solving for several

decades, developers have sought to utilize a variety of numerical
and statistical optimization methods to find suboptimal but good
enough approximations for practical use. A basic method is to use
principal component analysis (PCA) to estimate the direction of
largest spread in the point set and establish that as a cardinal di-
rection for the OBB. This process must be done using a continuous
set representation on the convex hull, or otherwise the approxima-
tion can be unboundedly bad [Dimitrov et al. 2009]. For obtaining
near-optimal results, there exists a (1 + ε)-approximation scheme
[Barequet and Har-Peled 2001], whereas for a completely oppo-
site line of approach one can embrace a carefully defined heuristic
to trade optimality for speed [Larsson and Källberg 2011]. There
have also been attempts at providing optimal results by using so-
phisticated numerical techniques, such as particle swarm optimiza-
tion [Borckmans and Absil 2010] and genetic search [Chang et al.
2011]. These have been proven to be effective, but they have an
element of randomness in them and may not find the optimal box
in all cases.

The only brute force approach so far has been the exhaustive search
of all orientations over SO(3, R). This space is large, but there is a
commonly known trick to prune it that seems to be folklore. Given
a candidate orientation for the OBB, a better fit can be searched in-
crementally by repeatedly projecting the model onto a plane corre-
sponding to one of the main axes of the current candidate OBB and
solving the resulting 2D problem in linear time using Toussaint’s ro-
tating calipers method. This reduces the brute force challenge from
SO(3, R) to a search of a good starting direction vector in the unit
(hemi)sphere, which, when iterated in this manner, would ”lock”
into the orientation of the optimal OBB. However the fundamental
problem is still that the search is conducted over a continuous space
and therefore it is not exhaustible by sampling a discrete set of ori-
entations. Because of this, a brute force search over orientation
angles is not able to guarantee an optimal result.

In summary, all known methods so far use either approximation,
numerics or heuristics, which is unsatisfying. There is a clear need
to develop a fast and exact geometric algorithm to solve the prob-
lem, which will be the main motivation in the following sections.

3 Mathematical Aspects

In order to work through the details, some notation and concepts
need to be first introduced. Recall that the internal points of the
input set do not play a role in the problem and one can restrict to
considering only the convex hull of the point set. In fact, for the
new algorithm, computing the convex hull is the required first step,
since the algorithm is built to operate on the edges of a convex poly-
hedron. The convex hull can be computed in expected O(n logn)
time for example by using the quickhull algorithm [Barber et al.
1996].

For each direction vector n, one or more vertices of the polyhe-
dron can be identified as the most extreme points to the direction
of n. These are called supporting vertices, and will be denoted by
Supp(n). If for two vertices v1 and v2 there exists a direction n
such that v1 ∈ Supp(n) and v2 ∈ Supp(−n), then v1 and v2 are
said to be antipodal. Geometrically described, two vertices are an-
tipodal if it is possible to find an orientation for an enclosing OBB
such that the two vertices of the hull lie on opposing faces of the
OBB.

In this paper, a new concept is introduced that is in some ways sim-
ilar to antipodality. If for two vertices v1 and v2 there exists two di-
rections n1 and n2 such that v1 ∈ Supp(n1) and v2 ∈ Supp(n2)
and n1 · n2 = 0, then v1 and v2 are said to be sidepodal. The geo-
metric meaning of this is that two vertices are said to be sidepodal
if it is possible to find an orientation for an enclosing OBB where

the OBB touches both vertices v1 and v2 on two adjacent faces of
the OBB.

The concepts of support, antipodality and sidepodality are naturally
extended to also refer to edges (and faces) of the hull. For example,
one may refer to an edge e being sidepodal to a vertex v, if it is
possible to orient an OBB to be flush with e and v on two adjacent
faces of the OBB.

If x is a vertex or an edge of the hull, then the set of all antipodal
vertices in the hull to x will be denoted by AntiV(x) and the set of
all antipodal edges in the hull to x will be denoted by AntiE(x).
Likewise, the sets SideV(x) and SideE(x) will refer to the sets of
all sidepodal vertices and respectively edges to x. Also, it will be
necessary to examine set intersections of these sidepodal sets, so as
a notational aid, SideV(e1, e2) will be used as a shorthand to refer
to the set intersection SideV(e1) ∩ SideV(e2). It is immediately
clear that if edge e : v0 → v1 is an antipodal or a sidepodal edge to
a feature x, then both vertices v0 and v1 of e immediately have the
same property. More precisely:

• If e ∈ AntiE(x), then {v0, v1} ⊆ AntiV(x),

• if e ∈ SideE(x), then {v0, v1} ⊆ SideV(x), and

• if e ∈ SideE(x1, x2), then {v0, v1} ⊆ SideV(x1, x2).

This may seem trivial, but it is worth explicitly noting since this
makes traversing sidepodal and antipodal edges effectively identi-
cal to traversing the sets of vertices. Note that for the sidepodality
relation, the opposite is not true, i.e. even if two neighboring ver-
tices are sidepodal to a feature x, it does not necessarily follow that
the edge connecting them would be sidepodal to x as well.

The notation N(v) will be used to refer to the set of vertex
neighbors of vertex v. Given an edge e, the angle measured from
inside of the hull between the two adjacent faces connected to e is
commonly called the dihedral angle of edge e. Because the hull
is convex, all dihedral angles are in the range of]0, 180[degrees.
Finally, the face normals of the two adjacent faces to e pointing
outwards of the hull will be denoted by f<(e) and f>(e). These
normal vectors define the following simple property that will be
useful later.

Lemma 3.1. If a face of an OBB is flush with an edge e of the
convex hull, then the (unnormalized) normal vector n of that face
of the OBB is equal to n = f<(e) +

(
f>(e)− f<(e)

)
∗ t for some

t ∈ [0, 1].

Proof. This formula for the normal follows directly from linear in-
terpolation. The value of t = 0 corresponds to the case when the
OBB is flush with the face with normal f<(e), and the value of
t = 1 corresponds to the OBB being flush with the face with the
normal f>(e). Since the dihedral angle of the edge is never 0, the
linear interpolation will not produce a degenerate zero vector.

While it would be possible to choose a parametrization based on
angle, or another that would preserve the magnitude of the normal
vector, either would greatly complicate later analysis, which is why
this presentation is preferred instead.

There exists an interesting geometric way to relate sidepodality of
a vertex and an edge to the support function.

Lemma 3.2. Given a vertex v and an edge e on a convex polyhe-
dron, the vertex v ∈ SideV(e) if and only if there exists a direction
vector n for which v ∈ Supp(n) and

(
n · f<(e)

)(
n · f>(e)

)
≤ 0.

Proof. By lemma 3.1, the normal vector n2 of the face of an OBB
that is flush with an edge e has the parametrization n2 = f<(e) +(
f>(e)−f<(e)

)
∗t. The vertex v is sidepodal to edge e if and only

if there exists a direction n such that v ∈ Supp(n) and n · n2 = 0.
Substituting the formula of the normal gives the equation

n ·
(
f<(e) +

(
f>(e)− f<(e)

)
∗ t
)

= 0, where t ∈ [0, 1] . (1)

The left-hand side is an expression linear to t, so its extremes are
at t = 0 and t = 1, and they correspond to values n · f<(e) and
n · f>(e). Therefore according to Bolzano’s theorem, equation (1)
has a solution if and only if one of these values is nonnegative and
the other is nonpositive. In other words, either

1. n · f<(e) ≤ 0 and n · f>(e) ≥ 0, or

2. n · f<(e) ≥ 0 and n · f>(e) ≤ 0.

Then, in either case multiplying the two expressions together yields
the desired result.

Antipodality and sidepodality both form symmetric nontransitive
relations for vertices and edges of the hull. The new algorithm will
be based on computationally resolving these relations on the vertex
graph of the convex hull. Therefore the rest of this section will fo-
cus on the mathematical study of these properties which will enable
the development of suitable algorithms to enumerate these sets.

3.1 Antipodal Edge and Vertex

Given an edge e and a vertex v of a convex polyhedron, it is possible
to formulate a precise test whether e and v are antipodal partners to
each other. This involves finding a common normal vector n for
which e ∈ Supp(n) and v ∈ Supp(−n), or concluding that such
a vector does not exist. The first condition is fulfilled if and only if
the direction n satisfies the parametrization of lemma 3.1, whereas
the second condition is met if and only if all vertex neighbors w of
vertex v are in the negative halfspace of the plane defined by v and
−n. This gives the following set of conditions:{

n = f<(e) +
(
f>(e)− f<(e)

)
∗ t , where t ∈ [0, 1] ,

(v − w) · n ≤ 0 ∀ w ∈ N(v) .

The set of equations defined on the second line generates a set of
intervals, one for each neighbor in N(v), that the parameter t must
lie in for the solution to be valid. When codified, it turns into a test
of whether the range intervals have a non-degenerate overlap. This
procedure is shown in algorithm 1.

Algorithm 1: AreAntipodal(v,e)
let t− = 0
let t+ = 1.0
for w ∈ N(v) do

let p = f<(e) · (w − v)
let q =

(
f<(e)− f>(e)

)
· (w − v)

if q > 0 then
t+ = Min(t+, p/q)

else if q < 0 then
t− = Max(t−, p/q)

else if p < 0 then
return false

return t− ≤ t+

3.2 Antipodal Pair of Edges

Testing whether given two edges e1 and e2 of a convex polyhedron
are antipodal is also straightforward. Geometrically reasoning, it
is immediate that if an OBB is flush with two edges e1 and e2 on
opposite faces of the box, then the normal vector n1 of one of these
faces is perpendicular to both e1 and e2, and therefore the direction
of n1 is given by the cross product of the two edge vectors. That is,
n1 = c ∗ e1 × e2 for some constant c. This direction is uniquely
defined, and to see whether the configuration is physically valid,
it remains only to test whether a box laid out in this orientation
intersects the inside of the polyhedron. A special case occurs when
e1 is parallel to e2, in which case the cross product is degenerate
and the box is free to ”hinge” around in contact with the two edges.
Testing whether intersection occurs can be achieved by using the
parametrization for the normal vectors of the two edges from lemma
3.1, which yields the following group of equations:
n1 = f<(e1) +

(
f>(e1)− f<(e1)

)
∗ t , where t ∈ [0, 1] ,

n2 = f<(e2) +
(
f>(e2)− f<(e2)

)
∗ u , where u ∈ [0, 1] ,

n1 = cn2 , where c < 0 .

This leads to a matrix equation of form Mx = f<(e1), where
x =

(
t c cu

)T and M is represented as column vectors in
the form

M =
(
f<(e1)− f>(e1) f<(e2) f>(e2)− f<(e2)

)
(2)

From here, the valid values for t and u are solved easily by generic
3x3 matrix techniques, and they directly define one of the face nor-
mal directions for the OBB. This method is presented in algorithm
2, which tests whether two edges are antipodal, and if so, returns
the normal direction for the face of the OBB that is flush with edge
e1.

Algorithm 2: AntipodalDir(e1, e2)
compute M according to equation (2)
let (t, c, cu)T = M−1f<(e1)
if c < 0 and t ∈ [0, 1] and u ∈ [0, 1] then

let n = f<(e1) +
(
f>(e1)− f<(e1)

)
∗ t

return n/||n||
else

return null

3.3 Sidepodal Pair of Edges

In a similar fashion, it can be analysed whether a pair of edges are
sidepodal partners to each other. If two edges e1 and e2 are sidepo-
dal, then the normal vectors defined on the two edges by lemma 3.1
must be perpendicular, which gives the following set of equations:
n1 = f<(e1) +

(
f>(e1)− f<(e1)

)
∗ t , where t ∈ [0, 1] ,

n2 = f<(e2) +
(
f>(e2)− f<(e2)

)
∗ u , where u ∈ [0, 1] ,

n1 · n2 = 0 .

Solving this set of equations leads to a new equation of the form

a+ bt + cu + dtu = 0, where t, u ∈ [0, 1] , (3)

where a, b, c and d are all scalar constants. Since the left-hand side
is a bilinear, closed and continuous expression of the parameters t
and u, it attains its minimum and maximum values at one of the four
extreme points of its domain, i.e. one of the four corners of the unit

square. This leads to a quick test that samples all these four corner
points of potential extrema and checks the signs of the result. If the
signs are different, then again due to Bolzano’s theorem, a solution
must exist to equation 3. A programmatic way to test this is shown
in algorithm 3.

Algorithm 3: AreSidepodal(e1, e2)

let a = f>(e1) · f>(e2)
let b =

(
f<(e1)− f>(e1)

)
· f>(e2)

let c =
(
f<(e2)− f>(e2)

)
· f>(e1)

let d =
(
f<(e1)− f>(e1)

)
·
(
f<(e2)− f>(e2)

)
let v− = Min(a, a+ b, a+ c, a+ b+ c+ d)
let v+ = Max(a, a+ b, a+ c, a+ b+ c+ d)
return v− ≤ 0 and v+ ≥ 0

3.4 Sidepodal Edge and Vertex

If a vertex v is located sidepodal to an edge, then lemma 3.2 says
that there must exist a normal n that satisfies the following condi-
tions. {(

n · f<(e)
)(
n · f>(e)

)
≤ 0 ,

v ∈ Supp(n) .

The first inequality holds if and only if one of the factors is non-
negative, and the other is nonpositive, and the second one holds if
and only if for each vertex neighbor w ∈ N(v) , n · (w − v) ≤ 0.
Therefore the normal vector n satisfies either

n · f<(e) ≤ 0 ,

n · f>(e) ≥ 0 ,

n · (w − v) ≤ 0 ∀ w ∈ N(v) ,

(4)

or
n · f<(e) ≥ 0 ,

n · f>(e) ≤ 0 ,

n · (w − v) ≤ 0 ∀ w ∈ N(v) .

(5)

The existence of a solution can be checked by proceeding with a
Gaussian elimination type of approach, performing elementary row
operations to reduce the inequalities to a pivoted form. However
when doing this, two rows may only be added together when they
have directions for their inequalities match, so the final pivotized
form of conditions in (4) and (5) will both form a set of 3 to 6
inequalities. If neither of these sets of inequalities form a contra-
diction by forcing n to a zero vector, then the vertex v and edge e
are sidepodal.

There is also another way to determine if v ∈ SideV(e). This is
based on the geometric observation that if a vertex is sidepodal to
an edge, then starting from a box configuration that is flush with v
and e on adjacent faces, it is always possible to spin the box around
the normal of the box face that is flush with e until the face of the
box that is flush with v meets with a second vertex w ∈ N(v).
This property can be stated in the following form.

Proposition 3.3. Given a vertex v and an edge e of a convex poly-
hedron, v ∈ SideV(e) if and only if there exists a vertex w ∈ N(v)
such that (e2 : v → w) ∈ SideE(e). �

Exploiting this property seemed to be more convenient in practice
rather than solving inequalities (4) and (5), however it is good to
know that both options exist.

3.5 Basis from Three Edges

Fixing an OBB to be flush with only two edges on adjacent faces of
the OBB does not yet uniquely define its orientation, but still leaves
one degree of freedom. This can be seen clearly for example in the
earlier analysis by [O’Rourke 1985]. The question then arises, if
one is given three edges e1, e2 and e3 of a polyhedron, is it possible
to orient an OBB to be flush with these edges, so that each of them
lies on separate, but mutually adjacent faces of the OBB, and if
so, what should the orientation (face normals n1, n2 and n3) of the
OBB be? A hasty analysis might conclude that edges ei would be
in fact identical to normals ni, and that there would be no solution
if ei were not mutually perpendicular. This kind of However this
is not correct. Alternatively, one might think that the normals ni

are computable from edges ei by some kind of sequence of cross
products, but this is not true either.

To provide the correct analysis, one proceeds with setting up a
group of equations like shown in previous sections. The three edges
are all mutually sidepodal, which yields the following:

n1 = f<(e1) +
(
f>(e1)− f<(e1)

)
∗ t , t ∈ [0, 1] ,

n2 = f<(e2) +
(
f>(e2)− f<(e2)

)
∗ u , u ∈ [0, 1] ,

n3 = f<(e3) +
(
f>(e3)− f<(e3)

)
∗ v , v ∈ [0, 1] ,

n1 · n2 = 0 ,

n2 · n3 = 0 ,

n1 · n3 = 0 .

(6)

Solving this is more complicated than before, but still doable. The
first three conditions of equation set (6) may be renamed to the form

n1 = a+ bt , where t ∈ [0, 1] ,

n2 = c+ du , where u ∈ [0, 1] ,

n3 = e+ fv , where v ∈ [0, 1] ,

(7)

for obvious substitutions of vector constants a, b, c, d, e and f . Ex-
panding the three dot product conditions of equation set (6) with
variables from equations (7) then yields

a · c+ b · ct + u(a · d+ b · dt) = 0 , (8)
c · e+ c · fv + u(d · e+ d · fv) = 0 , (9)
a · e+ a · fv + t(b · e+ b · fv) = 0 . (10)

Multiplying equation (8) by (d · e+ d · fv) and equation (9) by
−(a · d+ b · dt) and adding the resulting equations together gives

g + hv + t(i+ jv) = 0 , (11)

where
g := (a · c)(d · e)− (a · d)(c · e) ,
h := (a · c)(d · f)− (a · d)(c · f) ,

i := (b · c)(d · e)− (b · d)(c · e) ,
j := (b · c)(d · f)− (b · d)(c · f) ,

(12)

and then multiplying equation (10) by −(i+ jv) and equation (11)
by (b · e+ b · fv) and adding the resulting equations together yields

kv2 + lv +m = 0 , (13)

where
k := h(b · f)− j(a · f) ,

l := h(b · e) + g(b · f)

− i(a · f)− j(a · e) ,
m := g(b · e)− i(a · e) .

(14)

From here on, the two possible values for the parameter v can be
readily solved by applying a standard formula for roots of a second

degree polynomial to equation (13), and the values for t and u can
then be backtracked by using equations (9) and (10). If the second
degree polynomial in equation (13) has no real roots or if the pa-
rameters t, u or v are not in [0, 1] range, then an orientation does not
exist. As a special note, it is important to test that the final solution
for t, u and v satisfies the original set of equations (6) again, since
equations (8) and (9) imply (11) only one way. That is, a solution
to equation (11) might not be a solution to equations (9) and (10).
Similarly, the equations (10) and (11) only imply (13) one way as
well.

In conclusion, this derivation provides an exact test for determin-
ing whether given three edges of the convex hull can accommodate
an OBB orientation where the three edges are all on mutually adja-
cent faces of the OBB, and if so, provides the possible coordinate
frames (n1, n2, n3) for the orientation. Algorithm 4 shows a pro-
grammatic example. Note that this function will return a set of zero
to two solutions. The main algorithm will then loop over each of
these solutions in turn and process each one as a separate candidate
configuration.

Algorithm 4: ComputeBasis(e1, e2, e3)
compute a - m from equations (7), (12) and (14).
if polynomial kv2 + lv +m has no roots then

return {}
let v1, v2 be the roots of kv2 + lv +m
let O = ∅
for v ∈ {v1, v2} do

let t = (g + hv)/(i+ jv)
let u = (c · e+ c · fv)/(d · e+ d · fv)
let n1 = a+ bt
let n2 = c+ du
let n3 = e+ fv
if t, u, v ∈ [0, 1] and n1 ⊥ n2 and n1 ⊥ n3 and n2 ⊥ n3 then

O = O ∪
{

(n1/||n1||, n2/||n2||, n3/||n3||)
}

return O

3.6 Basis from a Direction and an Edge

The last subroutine that will be needed is the following. Let n1

be a predetermined normal direction for one of the faces of the
OBB. Then, given an edge e, is it possible to complete the remain-
ing orientation of the OBB (compute n2 and n3) such that edge e
is flush with a face of the resulting OBB? The task is to identify
if this is possible, and if so, complete n1 to an orthonormal basis
(n1, n2, n3) where, say, n2 is perpendicular to e. Note that like in
the case of the three edges from the previous chapter, the correct
answer is not the cross product n2 := n1 × e, since if e is parallel
to n1, the cross product will come out zero. Instead, lemma 3.1 can
be used again, which gives the following two conditions.{
n2 = f<(e) +

(
f>(e)− f<(e)

)
∗ u , where u ∈ [0, 1] ,

n1 · n2 = 0 .

Combining these two gives

n1 · f<(e) + n1 ·
(
f>(e)− f<(e)

)
∗ u = 0 ,

from where the solution is

u =
(
n1 · f<(e)

)
/
(
n1 · (f<(e)− f>(e))

)
when the denominator is not zero, and when it is, any value of u
will satisfy the equation if and only if n1 · f<(e) = 0 as well. The

Algorithm 5: CompleteBasis(n1, e)

let p = n1 · f<(e)
let q = n1 ·

(
f<(e)− f>(e)

)
if q 6= 0 then

let u = p/q
let n2 = f<(e) +

(
f>(e)− f<(e)

)
∗ u

n2 = n2/||n2||
let n3 = n1 × n2

return
{

(n1, n2, n3)
}

else if p = 0 then
let n2 = f<(e)
let n3 = n1 × n2

return
{

(n1, n2, n3)
}

else
return ∅

remaining face normal n3 is then solvable via a cross product. This
process is shown in algorithm 5.

The equations and algorithms that were presented in this section
provide the tools for identifying antipodal and sidepodal compan-
ions for edges, and allows construction of candidate orientations
for an enclosing OBB once a set of candidate edges have been cho-
sen. The enumeration of these edges will follow a graph search
approach, but in order to make it feasible, these sets must first be
analyzed in some spatial detail. The next section will focus on that
task, which will then enable building a search strategy for the algo-
rithm overall.

4 Analysis of Antipodal and Sidepodal Sets

For each convex polyhedron C, one can define the Gaussian
sphere representation of C, denoted by G(C). This representation
is a type of a dual representation of C, formed by a decomposition
of the unit sphere into disjoint regions, one for each vertex of C.
A point n in the Gaussian sphere belongs to the region of vertex v
of C if v ∈ Supp(n). This has the effect that vertices of C are
mapped to faces of G(C), and faces of C are mapped to single ver-
tices on G(C). An edge e on C is mapped to an arc on a great
circle of G(C) that is perpendicular in direction to e. Each face f
on G(C) is convex, because if v ∈ Supp(n1) and v ∈ Supp(n2),
then v ∈ Supp

(
tn1 + (1− t)n2

)
as well for t ∈ [0, 1].

Using the Gaussian sphere representation, the following can be
said.

Theorem 4.1. Given an edge e of C, the set AntiV(e) forms a
single connected component in the vertex neighbor graph of C.

Proof. The viable normal directions n for an OBB flush with an
edge e are explicitly parametrized by lemma 3.1, thus

AntiV(e) =
{
Supp

(
−f<(e)−

(
f>(e)−f<(e)

)
∗t
)

: t ∈ [0, 1]
}
.

On the Gaussian sphereG(C), this corresponds to a closed and con-
tinuous arc. Since this arc forms a single connected subset of points
on the Gaussian sphere, the set of vertices on C whose convex face
regions on G(C) the arc overlaps with is also connected.

Thinking about the set AntiV(e) being defined by an arc on the
Gaussian sphere is also very useful for another reason. The length
of the arc is directly defined by the dihedral angle of edge e, and
the closer the angle is to 180 degrees, the smaller the arc becomes,

meaning also that the smaller the set AntiV(e) corresponding to
edge e will be in general.

Likewise, the sets SideV(e) and SideE(e) have the same property.

Theorem 4.2. Given an edge e of C, the sets SideV(e) and
SideE(e) both form a single connected component in the vertex
neighbor graph of C.

Proof. By lemma 3.2, the set of antipodal vertices to edge e is de-
fined in terms of the support function in the form

SideV(e) =
{
Supp(n) :

(
f<(e) · n

)(
f>(e) · n

)
≤ 0
}
.

The set of normal vectors satisfying this inequality condition for n
forms a single closed and connected subset of G(C), so therefore
the set of vertices on C whose convex face regions on G(C) this
subset corresponds with is also connected. Adding the geometric
observation from proposition 3.3, it follows that the set SideE(e) is
also connected.

The reason that connectedness for these sets is important is that with
this property, if one first obtains any element v0 in, say, AntiV(e),
then the rest of the elements in that set can be enumerated quickly
in O

(
|AntiV(e)|

)
time by performing a graph search starting from

the neighborhood of v0, which will be much faster than having to
resort to a fullO

(
|V |
)

search over all vertices of the convex polyhe-
dron. However, this property is only true if the number of neighbors
for each vertex of the polyhedron is bounded by a constant. This
condition will be implicitly assumed in all the analysis that follows,
but one should keep this technicality in mind.

Finally, a similar result exists for the structure of set intersections
of pairs of sidepodal vertex sets.

Theorem 4.3. Given two edges e1 and e2 of C, the set
SideV(e1, e2) forms at most two separate connected components
in the vertex neighbor graph of C.

Proof. Expanding on the proof of lemma 3.2, the boundary of
SideV(e1) is defined by two equations f<(e1) · n = 0 and
f>(e1) · n = 0. These conditions map out two great circles on the
Gaussian sphere. Since the same holds for SideV(e2), the boundary
of SideV(e1, e2) is defined by an intersection of two pairs of great
circles. Given that the intersection of two circles can have two dis-
tinct solutions, the boundary of SideV(e1, e2) can be split into two
separate regions, both of which are themselves connected.

For the set SideV(e1, e2) it is therefore necessary to find, or ”boot-
strap” to two separate elements on the opposing sides of the Gaus-
sian sphere and perform a graph search from both starting points in
order to ensure that the whole set SideV(e1, e2) gets enumerated in
full.

This bootstrapping process is fortunately simple. Each of the sets
AntiV(e), SideV(e) and SideV(e1, e2) are defined by one or two
support vector directions, so the task of bootstrapping is the same
as to find an extreme vertex of the hull. That can be done in linear
time by iterating over the whole of V , but that is not very interest-
ing. A more advanced method is to utilize a Dobkin-Kirkpatrick
hierarchy to enable finding supporting vertices in O(logn) time
[Dobkin and Kirkpatrick 1990]. Therefore the total time complex-
ity to enumerate these sets is

• AntiV(e): O
(

logn+ |AntiV(e)|
)
.

• SideV(e): O
(

logn+ |SideV(e)|
)
.

• SideV(e1, e2): O
(

logn+ |SideV(e1, e2)|
)
.

Unfortunately it seems to be too difficult to give strict limits for
the sizes of antipodal and sidepodal sets in the general case. In
the following sections, the sizes of these sets are analyzed in two
special cases that are the most interesting.

4.1 Analysis of Sphere(n)

Consider a set of n distinct points taken uniformly random on the
surface of the unit sphere and denote by Sphere(n) the convex hull
of that set. Clearly Sphere(n) consists of the n vertices itself. As
n grows, the shape of Sphere(n) grows to resemble the unit sphere.
This set has two particularly important properties. The first is that
the dihedral angle of each edge e in Sphere(n) tends towards 180
degrees. This is another way of saying that the ”sharp” edges of
Sphere(n) all disappear. The second property is that the number of
vertices on each face of Sphere(n) is bounded by a constant. In fact,
each face is defined by exactly three vertices with probability 1.

In this scenario, the areas of the convex regions in the Gaussian
sphere corresponding to each vertex in Sphere(n) tend to zero size.
Therefore any region R of the Gaussian sphere corresponds to a
number of vertices of Sphere(n) that is linearly proportional to
the surface area of R in Sphere(n). In particular, this means the
following.

Theorem 4.4. With probability 1, on the set Sphere(n), for each
edge e, the size of antipodal vertices |AntiV(e)| ∈ O(1).

Proof. As n grows, the dihedral angle of e tends to 180 degrees. In
other words, f<(e) tends towards f>(e) and hence the arc traced
by −n = −f<(e) −

(
f>(e) − f<(e)

)
∗ t degenerates towards a

single point, which has zero surface area.

A similar property exists for sidepodal edges.

Theorem 4.5. With probability 1, on the set Sphere(n), for each
edge e, the size of sidepodal vertices |SideV(e)| ∈ O(

√
n).

Proof. Since f<(e) tends towards f>(e), the two boundary circles
that define support directions for SideV(e) tend to a single overlap-
ping great circle on the Gaussian sphere. The length of circumfer-
ence of this great circle is 2πr, whereas the total surface area of the
sphere is 4πr2. Relating areas to vertices, n u 4πr2, so therefore√
n u 2πr, or |SideV(e)| ∈ O(

√
n).

And finally,

Theorem 4.6. With probability 1, on the set Sphere(n), for
each pair of edges e1 and e2, the size of sidepodal vertices
|SideV(e1, e2)| ∈ O(1).

Proof. Continuing from proof of 4.5, the support directions for
SideV(e1, e2) is the intersection formed by two great circles. When
e1 6= e2, the great circles are distinct and the intersection has ex-
actly two solutions that are points. Like in the case of proof of
4.4, points have zero area, and hence SideV(e1, e2) ∈ O(1) as
well.

Putting these three results together looks like the following.

Theorem 4.7. On the set Sphere(n), given an edge e or a pair of
edges e1, e2, the total time taken to enumerate

• AntiV(e) is O(logn) +O(1) = O(logn).

• SideV(e) is O(logn) +O(
√
n) = O(

√
n).

• SideV(e1, e2) is O(logn) +O(1) = O(logn).

Proof. The total time to iterate over these sets is proportional to the
time taken to bootstrap to the first vertex, plus the size of the set
itself.

This result concludes the analysis in positive light that in a suitably
uniform scenario, the sizes of antipodal and sidepodal sets are con-
siderably smaller and faster to enumerate than linear time. In the
next section, the same analysis is done without the assumption of
uniformity in place.

4.2 A Singularity in Cylinder(n)

If the requirement of uniform distribution from the case of
Sphere(n) is lifted, do the properties of theorem 4.7 still hold in
the general case? Unfortunately not always, and it is possible to
construct a scenario where the sizes of these sets are linear. Curi-
ously, the only currently found case occurs when the input data set
is a cylinder, which is defined by

Cylinder(n) :=
{(

cos
2πi

n
,±1, sin

2πi

n

)
: i = 1, 2, . . . , n

}
.

This set represents a cylindrical shape with n points on both end
caps. An examination of this set shows that each edge e that is part
of the cylinder end caps of the convex hull of Cylinder(n) has a
linear number of vertices on average in each of the sets AntiV(e),
SideV(e) and SideV(e1, e2). Therefore enumerating over these
sets is no faster than just enumerating over all vertices of the hull.

Examining the Gaussian sphere of this shape gives a clue to why
this happens. One problem stems from the fact that the end faces
of the cylinder lie on parallel planes, and have both n ∈ Ω(n)
vertices. For the Gaussian sphere, this means that there are two
vertices corresponding to those faces exactly at the opposite poles
of the Gaussian sphere, and they both have n ∈ Ω(n) incident
edges connecting them. The existence of such a ”singularity”
point that connects a linear number of vertices forces the size of
AntiV(e) to be linear for each edge on the cylinder end caps. If the
number of vertices on each face of the convex hull was bounded by
a constant, this would not happen. However, even if imposing such
a restriction, the sizes of the sets SideV(e) and SideV(e1, e2) will
still remain linear, so this restriction does not completely capture
the worst case behavior. Therefore, at least in for Cylinder(n), the
following appears to be the case.

Proposition 4.8. In the worst case,

|AntiV(e)| , |SideV(e)| and |SideV(e1, e2)| ∈ Ω(n) . �

It remains an open question whether it is possible to characterize
the conditions when this occurs in a more precise manner to under-
stand this behavior better. So far this worst case behavior has only
been observed on shapes that are very cylindrical, and even a small
deviation from this generally causes the issue to vanish.

5 The New Algorithm

With the help of the mathematical analysis in sections 3 and 4, it is
now possible to present the main algorithm. The overall strategy is
straightforward: instead of performing a brute force search over all
potential orientation directions in the sphere, the plan is to enumer-
ate all OBB orientations that are uniquely fixed by combinations of

Figure 2: Examples of the four different edge contact categories A-D for a convex polyhedron and its enclosing OBB. The features in contact
with the OBB are highlighted in red. A: Three edges flush with three mutually adjacent faces of the OBB. B: Three edges flush with three
faces of the OBB, of which two are opposite. C: Three edges flush with two adjacent faces. D: Two edges flush with three faces, of which two
must be opposite.

Algorithm 6: FindMinOBB(V ,F ,E)

for e1 ∈ E do
for e2 ∈ SideE(e1) do

/* Test category A */

for e3 ∈ SideE(e1, e2) do
B = ComputeBasis(e1, e2, e3)
if B 6= ∅ then

O = ComputeOBB(V,B)
RecordOBB(O)

/* Test category B */

for e3 ∈ AntiE(e1) do
n = AntipodalDir(e1, e3)
B = CompleteBasis(n, e2)
if B 6= ∅ then

O = ComputeOBB(V,B)
RecordOBB(O)

/* Test category C */
for f ∈ F do

let e1, e2 be two edges in f .
let n = e1 × e2.
for e3 ∈ SideE(e1) do

B = CompleteBasis(n, e3)
if B 6= ∅ then

O = ComputeOBB(V,B)
RecordOBB(O)

edges of the convex hull. These configurations are divided into four
categories:

A The OBB is flush with three (or more) edges of the hull on three
(or more) mutually adjacent faces of the OBB. Example case
with minimal contact of the hull and the OBB:
0 : (1, 0, 2), 2 : (4, 0, 4), 4 : (3, 2, 0)
1 : (1, 4, 3), 3 : (4, 2, 1)

The minimal volume OBB is flush with edges 1 → 2, 1 → 4
and 2 → 3 on three mutually adjacent faces of the OBB and
touches vertex 0 on the face opposite to edge 1→ 2.

B The OBB is flush with three (or more) edges of the hull on three
(or more) faces of the OBB, of which two are opposite to each
other. Example case with minimal contact of the hull and the
OBB:
0 : (0, 2, 0), 2 : (0, 4, 0)
1 : (0, 2, 2), 3 : (2, 0, 2)

The minimal volume OBB is flush with edges 0 → 1, 0 → 2

and 2 → 3. The edges 0 → 1 and 2 → 3 lie on the opposite
faces of the OBB.

C The OBB is flush with three (or more) edges of the hull on only
two adjacent faces of the OBB, or in other words, the OBB is
flush with a face and an edge of the hull. Example case with
minimal contact of the hull and the OBB:
0 : (0, 0, 0), 2 : (5, 5, 0)
1 : (5, 2, 2), 3 : (10, 0, 0)

The minimal volume OBB is flush with the face formed by
vertices 0 → 2 → 3, and the opposite face of the OBB is in
contact with the vertex 1. Note that the contact edge on an
adjacent face of the OBB may or may not be the same as one
of the edges of the face. In this case, the adjacent edge is edge
0→ 3, which is also one of the face edges.

D The OBB is flush with only two edges of the hull on three differ-
ent faces of the OBB. This is a special case where an edge of
the hull coincides with an edge of the OBB. When this occurs,
there must exist two opposite faces on the OBB that contain
edges of the convex hull, or otherwise the box and the poly-
hedron could be projected to a 2D plane along the common
shared edge (reducing the shared edge to a point), and the re-
sulting 2D rectangle would not be flush with any edge of the
2D polygon and therefore would not be optimal. Example
case with minimal contact of the hull and the OBB:
0 : (0, 4, 2), 2 : (2, 4, 2), 4 : (1, 4, 0)
1 : (0, 4, 4), 3 : (3, 0, 1)

In this example, the minimal volume OBB is flush with only
two edges of the polyhedron, but these edges are in contact
with three different faces of the OBB. The vertex 0 is an in-
ternal vertex that is not in contact with the OBB.

Figure 2 shows a rendering to illustrate each of the example cases.

The main search will proceed by testing all valid configurations of
each of these categories. This is done in the following manner:

A + B For each edge e1 ∈ E, find all edges e2 ∈ SideE(e1) that
can be placed on an adjacent side of the OBB. Then, for
category A, complete the basis by searching for all edges
e3 ∈ SideE(e1, e2) to be placed on a third face of the OBB
that is mutually adjacent to both earlier faces. Correspond-
ingly for category B, complete the basis by searching for all
edges e3 ∈ AntiE(e1) to be placed on a third face of the OBB
that is opposite to the face that is in contact with edge e1.

C Loop over all faces f ∈ F . This fixes one of the face normals
n1 of the OBB. Then loop over all edges e3 ∈ SideE(e1),
where e1 is one of the edges of F . Complete the basis for
each using algorithm 5.

D This category gets implicitly handled during the search for

category B by allowing the assumption that e1 = e2, so no
separate code for testing category D is needed. Effectively
this is recognizing that an edge may be sidepodal to itself.

The full code to perform this iteration is presented in algorithm
6. This code contains two new functions that have not been intro-
duced before. The first function ComputeOBB takes a basis for
the orientation of an OBB and computes six extreme vertices of the
hull, one for each face of the OBB. With the help of the Dobkin-
Kirkpatrick structure, this takes at mostO(logn) time. The second
one is the function RecordOBB. This is a constant time opera-
tion which tests the newly created OBB for volume against the best
previously found one, and records the smaller of the two.

Algorithm 6 contains two separate top level loops. The first ex-
amines categories A, B and D, followed by a second one which
examines category C. In the first loop structure, an outer loop over
each edge of the hull fixes the first edge. This is a O(n) operation.
The second loop iterates over all sidepodal edges of the first edge.
This takes O

(
logn+ |SideE(e1)|

)
time.

The first innermost loop searches through all configurations in cat-
egory A in O

(
logn + |SideE(e1, e2)|

)
time. To establish the

orientation of the OBB, algorithm 4 is invoked, which computes
a basis set (n1, n2, n3) for the given three edges. The functions
ComputeOBB and RecordOBB then process the found basis.

The second innermost loop enumerates all configurations in cate-
gory B in O

(
logn + |AntiE(e1)|

)
time. If the iterated edges are

compatible, then one of the OBB face directions is first computed
with algorithm 2, which is completed to a full basis by the method
5. This basis is then again tested.

Last, the second loop body iterates through each configuration in
category C. Each face of the hull directly defines a face direction
for the OBB. The inner loop iterates over the sidepodal edges of e1
in O

(
logn + |SideE(e1)|

)
time to find the candidate orientations

for the second axis of the OBB. Like in the previous case, the full
basis is completed and tested.

The overall number of steps in the first loop structure is |E|
(

logn+

|SideE(e∗)|
)(

logn + |SideE(e∗, e∗)| + |AntiE(e∗)|
)

logn,
whereas the second loop runs in |F |

(
logn + |SideE(e∗)|

)
logn

steps. On the Sphere(n) data set, based on theorem 4.7, the overall
algorithm runtime is thereforeO

(
n3/2(logn)2

)
. In the worst case,

like in the case of the Cylinder(n) data set suggested by proposition
4.8, the algorithm runs in O(n3 logn) time.

5.1 Implementing the Graph Search

The main search algorithm in listing 6 contains for loops over sev-
eral different sets. Implementing these loops carefully is the key
to obtaining correct performance. While the for loops e1 ∈ E and
f ∈ F are trivial iterations of all stored edges and faces of the
hull, the other loops will require a two-phase operation that first
bootstraps to a first element of the set, and then traverses the vertex
graph of the hull to compute the remaining ones. This means that
the data structure storing the convex polyhedron will need to have
vertex adjacency information available. The actual iteration of each
set then works out to

For e2 ∈ AntiE(e1):

1. Compute the first antipodal vertex v0 ∈ Supp
(
− f<(e1)

)
.

2. Since the set of antipodal vertices is connected due to theorem
4.1, find all remaining antipodal vertices {vi}i ⊆ AntiV(e1)
by a flood fill that starts from v0 and proceeds to each of its

neighbors that are tested for antipodality with respect to edge
e1 using algorithm 1.

3. For each edge e2 that exists in the subgraph induced by the an-
tipodal vertices {vi}i, test each for antipodality with respect
to edge e1 using algorithm 2. This set of edges generates the
final set AntiE(e1).

For e2 ∈ SideE(e1):

1. Compute the first sidepodal vertex v0 ∈ Supp(e1).

2. Since the set of sidepodal vertices is connected due to theorem
4.2, find all remaining sidepodal vertices {vi}i ⊆ SideV(e1)
by a flood fill that starts from v0 and proceeds to each of its
neighbors that are tested for sidepodality with respect to e1
using methods from section 3.4.

3. For each edge e2 that exists in the subgraph induced by the
sidepodal vertices {vi}i, test each for sidepodality with re-
spect to edge e1 by using algorithm 3. This set of edges gen-
erates the final set SideE(e1).

For e3 ∈ SideE(e1, e2):

1. Let n = n1 × n2, where n1 and n2 are chosen using lemma
3.1 with respect to edges e1 and e2 in such a way that the cross
product is not denegerate.

2. Compute first representatives from both of the two disjoint
sets of connected components by searching v0 ∈ Supp(n)
and v1 ∈ Supp(−n).

3. Since the set of sidepodal vertices to a pair of edges is con-
nected inside the two disjoint sets, due to theorem 4.3, find all
remaining sidepodal vertices {vi}i ⊆ SideV(e1, e2) by two
separate flood fills that start from v0 and v1 respectively, and
proceed to each of their neighbors that are tested for sidepo-
dality with respect to e1 and e2 using methods from section
3.4.

4. For each edge e3 that exists in the subgraph induced by the
sidepodal vertices {vi}i, use algorithm 5 to compute the set
of edges that are sidepodal to both e1 and e2. This set of edges
generates the final set SideE(e1, e2).

This strategy ensures that the sets SideV(·) and SideE(·) are related
to each other in a numerically stable way.

5.2 Practical Considerations

Whenever implementing any piece of real-world code, there are al-
ways special considerations that are important to take into account
for the implementation to be successful and as efficient as possible.
In this section, such practical matters are discussed.

The first one is the fact that the algorithm relies on the precompu-
tation of the convex hull for the input point set. It is well known
that robustly computing an accurate convex hull for arbitrary input
can be hard due to floating point imprecision. A good treatise to
the stability issues with convex hull implementation that the reader
should be aware of has been presented at GDC [Gregorius 2014].

The OBB computation method itself has been found to be quite sta-
ble. It should however be noted that in places where the algorithms
presented in this paper compare floating point values for range or
equality, the code should in practice contain a very small epsilon
threshold for these comparisons. This is because otherwise the
graph search may terminate early when enumerating for example

Figure 3: Four models from the GAMMA Group real world data
set that exhibited worst case performance behavior. In clockwise
order starting from top left: arrow4.obj, taperoll.obj, candy05.obj
and kummer.obj. Each object has a strong cylindrical component
to their convex hulls.

the sets SideE(e∗), and not find an important configuration for the
OBB.

To improve overall performance, a developer is advised to pay at-
tention to the symmetry of the problem to avoid redundant (but con-
stant factor) work. One such case occurs for example when enumer-
ating over all edge pairs ei and ej that are sidepodal to each other.
Since the order in which these are searched does not matter, one can
cut the work in half by assuming a canonical ordering that i ≤ j.
Note that depending on the context, equality can be important, or
otherwise category D from section 5 might be missed. Another such
place where symmetry may occur is if traversing over vertex pairs
to find edges on the graph. In that case, the edges vi → vj and
vj → vi are the same, and should not be considered twice.

The version of the algorithm that was implemented for the
benchmarks in the next section does not actually use a Dobkin-
Kirkpatrick hierarchy to locate extreme vertices. To explain
why, consider the problem of finding k supporting vertices(
Supp(n1), Supp(n2), . . . , Supp(nk)

)
corresponding to a se-

quence of k direction vectors (n1, n2, . . . , nk). In the implemen-
tation, one is able to organize these queries so that each search
direction is often only a very small perturbation away from the
previous search direction. Then the first query for Supp(n1) will
amount to an uninformed search over V , but when searching for
Supp(n2), it is expected to be found in close vicinity to Supp(n1)
and can be located in only a few steps by performing a greedy hill
climbing search starting from the previously found vertex. There-
fore Supp(n2) through Supp(nk) can be found very quickly if
one caches the previous answer and always begins the next search
from that cached vertex. In this kind of implementation, there exists
a subroutine of depth-first search code which quickly establishes a
good spatially coherent ordering for the edge graph, and all loops in
the algorithm are implemented to follow this spatial order. In prac-
tice this was seen to perform extremely well, to the point of almost
having the confidence to assume amortizedO(1) time extreme ver-
tex queries. However, there are technicalities involved and practical
benchmarks still showed a very slow logarithmic growth. A rigor-
ous exploitation of spatial coherency might have to consider a fast
constant factor approximation to what is called the Chinese Post-
man Problem [Filho and de Avila Ribeiro Junqueira 2010] in order
to establish a strict upper bound.

When benchmarking the implementation, it was found to be prac-
tical to precompute up front the first representatives for the sets

0 0.2 0.4 0.6 0.8 1

·104

0

5

10

15

20

n: number of vertices on the sphere

se
co

nd
s

to
co

m
pu

te
O

B
B

Sphere(n)

O
(
n3/2(logn)2

)

Figure 4: Time taken to compute minimum volume OBB for
Sphere(n).

AntiV(e) and SideE(e) for each edge e. Since this can be done
outside the hot inner loops in O(n logn) time and O(n) storage
space, it will speed up the implementation noticeably. In fact, pre-
computing full contents of the antipodal and sidepodal sets outside
the hot loops was measured to be a performance gain. That how-
ever is an implementation tradeoff since storing full sets will require
more than a linear amount of memory storage.

For the graph searches, the implementation will probably follow a
flood fill type of approach to detect whether a given vertex has been
visited before. An efficient implementation of this should not use
a set or an associative container that would dynamically mutate to
track the visited vertices, but instead it is much faster to preallocate
a flat array of static size n, where each index of the array stores
the information whether that vertex has been visited or not. This
scheme gives the ability to clear the structure for new searches in
constant time, by giving each search operation its own unique ID,
and storing at each index this ID if the given vertex has been visited.
Starting a new search then corresponds to simply incrementing the
ID counter by one, which effectively resets all vertices to unvisited
state. Also, when performing the actual search, one should not use
recursive function calls, because unless optimized into tail calls,
these may have unbounded depth and stack space in most runtime
environments is fixed.

5.3 Dealing with the Singularity

Since the performance gap between best and worst cases is so large,
it is natural to ask if the worst case performance can be improved.
Unfortunately this is yet unknown, but there are a number of things
that can be done to mitigate the issue in practice. In this section
three such strategies are presented.

The algorithms presented in section 3 deal with computing scalars
to obtain normal vectors for OBB faces from the parametrization
given in lemma 3.1. In the difficult case of the cylinder, it can be
observed that the solutions for this parametrization often come out
at the extreme ends when t = 0 or t = 1, since several edges of the
cylinder have a dihedral angle of exactly 90 degrees. This corre-
sponds to the special case when one of the OBB faces is flush with
a face of the polyhedron, and because these configurations will all
be searched in the loop for category C, there is no reason to handle
them at all in categories A and B. Therefore the implementation is

file vertices faces edges texact tmerge textrude tapprox Vextrude/Vexact Vapprox/Vexact

arrow4.obj 1024 2044 3066 84.7 29.6 16.4 0.54 1.0005x 1.006x
taperoll.obj 839 1674 2511 67.5 54.3 8.63 2.05 1.005x 1.011x
candy05.obj 20044 40084 60126 84.7 83.9 29.8 0.1 1.00007x 1.001x
kummer.obj 624 1244 1866 66.9 11.8 3.45 0.7 1.007x 1.012x

Figure 5: Results of applying preprocessing methods on the four worst case models from the data set obtained from GAMMA Group mesh
database. The columns tx show the number of seconds taken to compute the minimum volume OBB in different cases. The column texact

corresponds to the case of the original unprocessed model. Last two columns denote ratios of the found OBBs to the volume of the optimal
box, when approximation methods were used.

free to restrict valid values of t to the range [ε, 1 − ε] for a small
constant ε > 0 in order to cut down redundant work.

Another observation is that the convex hull algorithm that is em-
ployed might by convention generate hulls that consist of triangular
faces only. This can create neighboring triangles that are aligned
in a plane. The edges joining such adjacent planar triangles have
a dihedral angle of 180 degrees each, so they are degenerate and
do not have any actual effect and an implementation should remove
these edges in a preprocess step. This can be done either by merg-
ing all neighboring planar triangles to form convex polygons, or
by ignoring all internal edges on the faces during the search. This
scheme will be later called the merge strategy. In the case of the
cylinder, the overhead from redundant internal edges can be consid-
erable since there are a linear number of them, and if not removed,
each of these internal edges will in turn have a linear number of
sidepodal partners.

The abovementioned optimizations are unfortunately only improve-
ments by a constant factor. In order to completely remove the
problem in practice, two specific approximation methods were em-
ployed with the goal of preprocessing the convex hull in a subtle
manner that should have only minimal effect on the resulting OBB,
but would considerably cut down the work in practice. Assuming
that the basis of the OBB obtained as a result from this approxima-
tion does not change much, then the same basis can be used on the
original unprocessed convex hull to compute the exact tight-fitting
OBB.

The first method builds on the idea that because the end caps of the
cylinder are so problematic due to the large number of vertices in
them, these faces should be removed. This can be done by extrud-
ing a new vertex outward to the direction of the face normal from
the centroid of each face polygon that has too many vertices. This
breaks each polygonal face up into a number of triangles, which
each have their unique face normal direction. If the new vertex is
located very close to the plane of the polygon, the orientation of
the resulting OBB will be very close to the original. This method
will be called the extrude strategy. For convex hull algorithms that
produce only triangular data, this strategy will first require running
the merge step to find the faces with large number of vertices.

The second method operates by constructing a simplified approxi-
mation of the convex hull by repeatedly merging two adjacent faces
of the hull that are almost coplanar, until an error threshold is met
or the number of faces is reduced down to a number that is small
enough to process. When two faces are merged in this manner, the
new face does not even need to enclose all the points of the original
hull, since the approximation will only be used to establish an orien-
tation for the OBB and the tight fit can be computed on the original
hull after the basis has been chosen. The process can be done for
disjoint pairs of faces, after which the convex hull is recomputed
again to ensure proper convexity. For the case of the cylinder, this
method was found to be very efficient, since it successfully removes
large numbers of edges on the side of the cylinder, where the finest
detail typically is. This will be called the approx strategy. Running

merge or extrude steps before this strategy was not seen beneficial,
so the results for this strategy consist of only running the approx
step alone.

The next section reports results from practical tests, where the last
conducted test shows comparisons of adding the three optimizations
merge, extrude and approx that were introduced in this section.

6 Experimental Results

The new algorithm proposed in section 5 was implemented us-
ing the open source MathGeoLib software package [Jylänki 2011–
2015]. The code was then tested on two different data sets. The first
one was the synthetic case of Sphere(n) from section 4.1 for values
n ∈ {50, 100, 150, . . . , 10000}. The second data set consisted of
2088 different 3D models obtained from the GAMMA Group on-
line 3D mesh research database [GAMMA Group 2008]. From this
database, all files in the .obj file format were chosen from five dif-
ferent categories:

• 55 models from the dataset 2001.

• 381 models from the dataset ANIMALS.

• 530 models from the dataset ARCHITEC.

• 437 models from the dataset GEOMETRY.

• 685 models from the dataset MECHANICAL.

In the first test, an OBB was generated for each input object in
both of the two data sets using the exact version of new algorithm
that does not include approximations from the previous section, and
the result was compared for optimality against the smallest vol-
ume OBB found via a brute force search. The brute force search
consisted of subdividing the unit hemisphere to a search grid of
256 ∗ 256 starting search directions, and using the rotating calipers
method to improve the volume of the box until reaching a local
minimum for each start orientation. This test confirmed that in each
case, the new algorithm found the same or a better bounding OBB
than the brute force method did, up to the precision determinable
by floating point computation.

The second test consisted of benchmarking the performance of the
exact version of the new algorithm on the same two data sets.
The performance tests were run on a MacBook Pro laptop with a
2.7GHz Intel Core i7 processor and 16GB of RAM running Win-
dows 8.1. The test program was built by using the Microsoft Visual
Studio 2013 Update 4 compiler, with 64-bit compilation and Math-
GeoLib AVX SIMD performance optimizations enabled. Execu-
tion was single-threaded in all benchmarks. The numbers reported
in each case do not include the time taken to run the quickhull algo-
rithm. The resulting runtime performance for the case of Sphere(n)
is shown in figure 4, where the actual data is graphed in blue. A
regression curve of the expected performance of n3/2(logn)2 pro-
vided by earlier analysis was fit to this data in the range n ≤ 5000
and is shown for reference in black. Extrapolating this curve for

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0

1

2

3

4

5

6

n

se
co
n
d
s

2001
animals
architec

geometry
mechanical

O
(
n3/2(logn)2

)

Figure 6: A scatter plot showing the time taken to compute the minimum volume OBB for five different data sets from the GAMMA Group 3D
mesh database. Each model is located on the x-axis based on the number of vertices on its convex hull. The y-coordinate specifies the number
of seconds taken to compute the OBB for that model. The black curve shows the regression function from the previous Sphere(n) case. The
four models shown in figure 3 were complete outliers that did not fit in this plot.

values of 5000 ≤ n ≤ 10000 shows a pleasing match with the
recorded data.

Figure 6 shows the performance of the exact version of the algo-
rithm on the real world data sets from the GAMMA Group. In
the scatter plot, the x-coordinate of each point gives the number of
points on the convex hull of that object, whereas the vertical axis
shows the time taken to compute the OBB, in seconds. The re-
sults from this benchmark show that fortunately the performance
for most real world objects is very similar to the case of Sphere(n).
Of the 2088 models that were tested, 2084 exhibited performance
close to the best case behavior. The remaining four models were
outliers that took more than a minute to process. Taking a closer
look revealed that each of these four had convex hulls that have a
strong cylindrical shape. Figure 3 shows a rendering of each.

The last test consisted of measuring the effects of including the
merge, extrude and approx mitigation strategies on these four dif-
ficult test models from the GAMMA Group database that suffered
from degenerate behavior. The results are presented in figure 5 and
they look promising. For all models, merging planar triangles was
an improvement. Since it does not change the optimality of the
result or slow down the computation of the OBB, it would be a
mistake to ignore the merge preprocessing step. The extrude ap-
proximation method was also effective and it was able to speed up
the computation considerably in each case. Even while this method
is not theoretically optimal, it is something to consider in practice,
since the resulting OBB volumes were only 0.5% larger than the
optimal in worst case. Finally, the results of the approx method
shows that it is a promising way to speed up the search to a few
seconds at most, while only introducing about one percent increase
in the resulting volume.

7 Conclusion and Future Work

A new algorithm has been introduced for finding tight-fitting
enclosing bounding boxes for three-dimensional point data. The

method operates by quickly iterating over all possible OBB
orientations that are uniquely determined by combinations of
edges of the convex hull of the input. This was made possible
with the help of new mathematical insight on the problem. The
algorithm is able to accurately find the optimal minimum volume
enclosing OBB in all conducted tests. Unfortunately the optimality
of this method depends on an unproven assumption, but given the
infallible practical evidence, it is appropriate to posit the following.

Conjecture 7.1. A box of minimal volume circumscribing a convex
polyhedron has at least three distinct edge-face contacts (of which
at least two occur on adjacent faces of the OBB).

In this statement, an edge-face contact means that a specific face f
of the OBB is flush with a specific edge e of the polyhedron. Being
distinct means that in any pair of the contacts, either the edges or
the faces in question are different. This statement captures all of the
categories A - D enumerated in section 5 (figure 2), so if proven,
it would assert the optimality of the new algorithm. The second
part in parentheses is repeated from theorem 2.1. If conjecture 7.1
holds, the presented method will be the first algorithm in its own
class in comparison to all previously published results: an exact
and deterministic geometric enumeration method for solving the
minimum volume OBB problem.

The algorithm has been implemented in practice and the real world
results validate the theoretical aspects. On the tested real world
models that are not cylinder-like, the algorithm runs in the pre-
dicted O(n3/2(logn)2) time, which is a large improvement over
the previously published best O(n3) time complexity. For mod-
els that have only a few hundred points on their convex hulls, the
algorithm can find optimal OBBs at interactive rates. In the worst
case, which is currently only known to happen on cylindrical shapes
and shapes that can have vertices with Ω(n) number of neighbors,
the algorithm exhibits degenerate behavior that causes it to run in
O(n3 logn) time. However this performance cliff can be mitigated
in practice by performing a preprocessing step on the input. It is an

open question if this worst case behavior can be strictly improved.
On the other end, I believe that Ω(n3/2) is a lower bound that can-
not be circumvented by any algorithm that is based on enumerating
edge configurations of the hull.

In some applications it is more useful to find an enclosing OBB that
minimizes the surface area of the box rather than the volume. The
presented algorithm can be trivially adapted to optimize the sur-
face area instead of the volume, but it is unclear however whether
this will result in optimal minimum surface area OBBs. Due to the
already lengthy treatise presented in this paper, this kind of exami-
nation was left out for later.

Solving conjecture 7.1 will probably need to examine the volume of
an OBB as a function of a given basis. O’Rourke suspected that this
function might have local minima in configurations where the OBB
is flush with exactly two edges and four vertices of the polyhedron,
but noted that he had not found evidence of this in practice. If such
a configuration exists that is a global minimum, it will disprove the
optimality of the new algorithm presented here. Despite attempts
at producing such a configuration via computer search, I have not
been able to find a counterexample. In fact, such a configuration
does not seem to exist even as a local minimum. Therefore it raises
a question whether conjecture 7.1 could even be strengthened to
apply to all local minima of the volume function.

Acknowledgements

I would like to thank Kalle Leppälä and Ilari Vallivaara for each of
the many pleasing and insightful conversations on the topic.

References

BARBER, C. B., DOBKIN, D. P., AND HUHDANPAA, H. 1996.
The quickhull algorithm for convex hulls. ACM TRANSAC-
TIONS ON MATHEMATICAL SOFTWARE 22, 4, 469–483.

BAREQUET, G., AND HAR-PELED, S. 2001. Efficiently approxi-
mating the minimum-volume bounding box of a point set in three
dimensions. J. Algorithms 38, 1 (Jan.), 91–109.

BARTZ, D., KLOSOWSKI, J. T., STANEKER, D., INTERAKTIVE
SYSTEME, G., AND TÜBINGEN, U., 2005. Visual computing
for medicine.

BORCKMANS, P. B., AND ABSIL, P.-A. 2010. Oriented bounding
box computation using particle swarm optimization. In ESANN.

CHAN, C. 2003. Minimum Bounding Boxes and Volume Decom-
position of CAD Models. University of Hong Kong.

CHANG, C.-T., GORISSEN, B., AND MELCHIOR, S. 2011.
Fast oriented bounding box optimization on the rotation group
SO(3,R). ACM Trans. Graph. 30, 5 (Oct.), 122:1–122:16.

DIMITROV, D., KNAUER, C., KRIEGEL, K., AND ROTE, G. 2009.
Bounds on the quality of the pca bounding boxes. Comput.
Geom. Theory Appl. 42, 8 (Oct.), 772–789.

DOBKIN, D. P., AND KIRKPATRICK, D. G. 1990. Determining
the separation of preprocessed polyhedra: A unified approach.
In Proceedings of the Seventeenth International Colloquium on
Automata, Languages and Programming, Springer-Verlag New
York, Inc., New York, NY, USA, 400–413.

EBERLY, D. H. 2006. 3D Game Engine Design, Second Edition: A
Practical Approach to Real-Time Computer Graphics (The Mor-
gan Kaufmann Series in Interactive 3D Technology). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

ERICSON, C. 2004. Real-Time Collision Detection (The Morgan
Kaufmann Series in Interactive 3-D Technology) (The Morgan
Kaufmann Series in Interactive 3D Technology). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

FILHO, M. G., AND DE AVILA RIBEIRO JUNQUEIRA, R. 2010.
Chinese postman problem (cpp): solution methods and compu-
tational time. Int. J. of Logistics Systems and Management.

FREEMAN, H., AND SHAPIRA, R. 1975. Determining the
minimum-area encasing rectangle for an arbitrary closed curve.
Commun. ACM 18, 7 (July), 409–413.

GAMEDEV.NET. How to create oriented bounding box.

GAMMA GROUP, 2008. 3d meshes research database of
the group génération automatique de maillages et méthodes
d’adaptation, inria, france. [software, website]. Avail-
able at https://www-roc.inria.fr/gamma/gamma/
download/download.php.

GEOMETRIC TOOLS LLC. Mathematics: Computational geome-
try.

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996.
Obbtree: A hierarchical structure for rapid interference detec-
tion. In Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York,
NY, USA, SIGGRAPH ’96, 171–180.

GREGORIUS, D., 2014. The 3d quickhull algo-
rithm. Game Developers Conference. Available at
http://www.gdcvault.com/play/1020141/
Physics-for-Game-Programmers.

JYLÄNKI, J., 2011–2015. MathGeoLib: A C++ library for
3D mathematics and geometry manipulation. Available at
http://clb.demon.fi/MathGeoLib/ and https://
github.com/juj/MathGeoLib/.

KAY, T. L., AND KAJIYA, J. T. 1986. Ray tracing complex
scenes. In Proceedings of the 13th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York,
NY, USA, SIGGRAPH ’86, 269–278.

LARSSON, T., AND KÄLLBERG, L. 2011. Fast computation of
tight-fitting oriented bounding boxes. In Game Engine Gems 2,
E. Lengyel, Ed. A K Peters, 3–19.

MEGIDDO, N. 1982. Linear-time algorithms for linear program-
ming in r3 and related problems. In Foundations of Computer
Science, 1982. SFCS ’08. 23rd Annual Symposium on, 329–338.

O’ROURKE, J. 1985. Finding minimal enclosing boxes. Interna-
tional Journal of Computer & Information Sciences 14, 3, 183–
199.

SCHNEIDER, P. J., AND EBERLY, D. 2002. Geometric Tools for
Computer Graphics. Elsevier Science Inc., New York, NY, USA.

STACKOVERFLOW. Creating oobb from points.

TOUSSAINT, G. 1983. Solving geometric problems with the rotat-
ing calipers. In Proc. IEEE MELECON ’83, 10—02.

TROUTMAN, N. Calculating minimum volume bounding box.

WELZL, E. 1991. Smallest enclosing disks (balls and ellipsoids). In
Results and New Trends in Computer Science, Springer-Verlag,
359–370.

https://www-roc.inria.fr/gamma/gamma/download/download.php
https://www-roc.inria.fr/gamma/gamma/download/download.php
http://www.gdcvault.com/play/1020141/Physics-for-Game-Programmers
http://www.gdcvault.com/play/1020141/Physics-for-Game-Programmers
http://clb.demon.fi/MathGeoLib/
https://github.com/juj/MathGeoLib/
https://github.com/juj/MathGeoLib/

