Back to class index
Plane[Class Summary]
normal
d
ctor (+6 overloads)
IsDegenerate()[const]
Set(v1,v2,v3) (+1 overload)
ReverseNormal()
PointOnPlane()[const]
Point(u,v)[const] (+1 overload)
Translate(offset)
Transform(transform) (+3 overloads)
IsInPositiveDirection(directionVector)[const]
IsOnPositiveSide(point)[const]
ExamineSide(triangle)[const]
AreOnSameSide(p1,p2)[const]
Distance(point)[const] (+4 overloads)
SignedDistance(point)[const] (+11 overloads)
OrthoProjection()[const]
Project(point)[const] (+5 overloads)
ProjectToNegativeHalf(point)[const]
ProjectToPositiveHalf(point)[const]
MirrorMatrix()[const]
Mirror(point)[const]
Refract(...)[const]
ClosestPoint(point)[const] (+2 overloads)
Contains(point,epsilon)[const] (+6 overloads)
SetEquals(plane,epsilon)[const]
Equals(other,epsilon)[const]
BitEquals(other)[const]
IsParallel(plane,epsilon)[const]
DihedralAngle(plane)[const]
Intersects(...)[const] (+14 overloads)
Clip(line)[const] (+3 overloads)
PassesThroughOrigin(epsilon)[const]
GenerateCircle(...)[const]
ToString()[const]
SerializeToString()[const]
SerializeToCodeString()[const]
IntersectLinePlane(...)[static]
FromString(str,outEndStr)[static] (+1 overload)

Plane::Mirror

Syntax

float4 Plane::Mirror(const float4 &point) const; [11 lines of code]

Mirrors the given point with respect to this plane.

This function maps the given point to its mirror point on the opposite side of this plane.

Note
This operation can be expressed as a float3x4 matrix operation. To compute the mirror matrix for this plane, use the MirrorMatrix() function.

See Also

MirrorMatrix().