Back to class index
Polyhedron[Class Summary]
v
f
ctor
NumVertices()[const]
NumFaces()[const]
NumEdges()[const]
VertexArrayPtr() (+1 overload)
Vertex(vertexIndex)[const]
Edge(edgeIndex)[const]
Edges()[const]
Faces()[const]
EdgeIndices()[const]
FacePolygon(faceIndex)[const]
FacePlane(faceIndex)[const]
FaceNormal(faceIndex)[const]
ExtremeVertex(direction)[const]
ExtremePoint(direction)[const]
ProjectToAxis(...)[const]
ConvexCentroid()[const]
ApproximateConvexCentroid()[const]
SurfaceArea()[const]
Volume()[const]
MinimalEnclosingAABB()[const]
MergeAdjacentPlanarFaces()
FaceIndicesValid()[const]
FlipWindingOrder()
OrientNormalsOutsideConvex()
RemoveRedundantVertices()
IsNull()[const]
IsClosed()[const]
IsConvex()[const]
EulerFormulaHolds()[const]
FacesAreNondegeneratePlanar(epsilon)[const]
ClipLineSegmentToConvexPolyhedron(...)[const]
NearestVertex(point)[const]
Contains(point)[const] (+7 overloads)
FaceContains(...)[const]
FaceContainmentDistance2D(...)[const]
ContainsConvex(point,epsilon)[const] (+2 overloads)
ClosestPoint(...)[const] (+2 overloads)
ClosestPointConvex(point)[const]
Distance(point)[const]
Intersects(lineSegment)[const] (+11 overloads)
IntersectsConvex(line)[const] (+2 overloads)
MergeConvex(point)
Translate(offset)
Transform(transform) (+3 overloads)
SetEquals(p2)
SwapVertices(i,j)
CanonicalizeFaceArray()
ContainsFace(face)[const]
FindClosestVertex(pt,outDistanceSq)[const]
Triangulate()[const]
ToString()[const]
ConvexHull(...)[static]
Tetrahedron(...)[static]
Octahedron(...)[static]
Hexahedron(...)[static]
Icosahedron(...)[static]
Dodecahedron(...)[static]

Polyhedron::ExtremePoint

Syntax

float4 Polyhedron::ExtremePoint(const float4 &direction) const; [4 lines of code]

Computes an extreme point of this Polyhedron in the given direction.

An extreme point is a farthest point of this Polyhedron in the given direction. Given a direction, this point is not necessarily unique.

Parameters

const float4 &directionThe direction vector of the direction to find the extreme point. This vector may be unnormalized, but may not be null.

Return Value

An extreme point of this Polyhedron in the given direction. The returned point is always a corner point of this Polyhedron.

See Also

CornerPoint().