Back to class indexv | zero[static][const] | identity[static][const] | nan[static][const] | ctor (+3 overloads) | ToQuat()[const] | GetScale()[const] | operator[](row) (+1 overload) | At(row,col) (+1 overload) | Row(row) (+1 overload) | Row3(row) (+1 overload) | Col(col)[const] | Col3(col)[const] | Diagonal()[const] | ScaleRow(row,scalar) | ScaleCol(col,scalar) | PositiveX/Y/Z()[const] | ptr() (+1 overload) | SetRow(row,data) (+2 overloads) | SetCol(column,data) (+2 overloads) | Set(...) (+3 overloads) | SetIdentity() | SwapColumns(col1,col2) | SwapRows(row1,row2) | SetRotatePart/X/Y/Z(...) (+1 overload) | operator=(rhs) (+1 overload) | Determinant()[const] | DeterminantSymmetric()[const] | Inverse(epsilon) | InverseFast(epsilon) | SolveAxb(b,x)[const] | Inverted()[const] | InverseColOrthogonal() | InverseOrthogonalUniformScale() | InverseOrthonormal() | InverseSymmetric() | Transpose() | Transposed()[const] | InverseTranspose() | InverseTransposed()[const] | Trace()[const] | Orthonormalize(...) | RemoveScale() | Transform(vector)[const] (+1 overload) | TransformLeft(lhs)[const] | Transform(vector)[const] | BatchTransform(...)[const] (+3 overloads) | operator*(rhs)[const] (+4 overloads) | operator/(scalar)[const] | operator+(rhs)[const] | operator-(rhs)[const] (+1 overload) | operator+()[const] | operator*=(scalar) | operator/=(scalar) | operator+=(rhs) | operator-=(rhs) | IsFinite()[const] | IsIdentity(epsilon)[const] | IsLowerTriangular(epsilon)[const] | IsUpperTriangular(epsilon)[const] | IsInvertible(epsilon)[const] | IsSymmetric(epsilon)[const] | IsSkewSymmetric(epsilon)[const] | HasUnitaryScale(epsilonSq)[const] | HasNegativeScale()[const] | HasUniformScale(epsilon)[const] | IsRowOrthogonal(epsilon)[const] | IsColOrthogonal(epsilon)[const] | IsColOrthogonal3(epsilon)[const] | IsOrthonormal(epsilon)[const] | Equals(other,epsilon)[const] | ToString()[const] | SerializeToString()[const] | ToString2()[const] | ToEuler***()[const] | ExtractScale()[const] | Decompose(rotate,scale)[const] (+1 overload) | Mul(rhs)[const] (+5 overloads) | MulPos(rhs)[const] (+1 overload) | MulDir(rhs)[const] (+1 overload) | RotateX/Y/Z(angleRadians)[static] | RotateAxisAngle(...)[static] | RotateFromTo(...)[static] | LookAt(...)[static] | RandomRotation(lcg)[static] | RandomGeneral(...)[static] | FromQuat(orientation)[static] | FromRS(rotate,scale)[static] (+1 overload) | FromEuler***(ex,ey,ex2)[static] | Scale(sx,sy,sz)[static] (+1 overload) | ScaleAlongAxis(axis,scalingFactor)[static] | UniformScale(uniformScale)[static] | ShearX/Y/Z(yFactor,zFactor)[static] | Mirror(p)[static] | OrthographicProjection/YZ/XZ/XY(target)[static] |
| float3x3::FromEuler***Syntaxfloat3x3 float3x3::FromEulerXYX(float ex, float ey, float ex2); [7 lines of code] float3x3 float3x3::FromEulerXZX(float ex, float ez, float ex2); [7 lines of code] float3x3 float3x3::FromEulerYXY(float ey, float ex, float ey2); [7 lines of code] float3x3 float3x3::FromEulerYZY(float ey, float ez, float ey2); [7 lines of code] float3x3 float3x3::FromEulerZXZ(float ez, float ex, float ez2); [7 lines of code] float3x3 float3x3::FromEulerZYZ(float ez, float ey, float ez2); [7 lines of code] float3x3 float3x3::FromEulerXYZ(float ex, float ey, float ez); [7 lines of code] float3x3 float3x3::FromEulerXZY(float ex, float ez, float ey); [7 lines of code] float3x3 float3x3::FromEulerYXZ(float ey, float ex, float ez); [7 lines of code] float3x3 float3x3::FromEulerYZX(float ey, float ez, float ex); [7 lines of code] float3x3 float3x3::FromEulerZXY(float ez, float ex, float ey); [7 lines of code] float3x3 float3x3::FromEulerZYX(float ez, float ey, float ex); [7 lines of code]Creates a new [float3x3] from the given sequence of Euler rotation angles (in radians). The FromEulerABC function returns a matrix M = A(ea) * B(eb) * C(ec). Rotation C is applied first, followed by B and then A. |