Back to class indexa | b | c | ctor (+1 overload) | Translate(offset) | Transform(transform) (+3 overloads) | BarycentricUVW(point)[const] | BarycentricUV(point)[const] | Point(uvw)[const] (+3 overloads) | Centroid()[const] | CenterPoint()[const] | Area()[const] | Perimeter()[const] | VertexArrayPtr() (+1 overload) | Vertex(i)[const] | CornerPoint(i)[const] | Edge(i)[const] | PlaneCCW()[const] | PlaneCW()[const] | NormalCCW()[const] | NormalCW()[const] | UnnormalizedNormalCCW()[const] | UnnormalizedNormalCW()[const] | AnyPointFast()[const] | ExtremePoint(direction)[const] (+1 overload) | ToPolygon()[const] | ToPolyhedron()[const] | BoundingAABB()[const] | IsFinite()[const] | IsDegenerate(epsilon)[const] | Contains(...)[const] (+2 overloads) | Distance(point)[const] (+2 overloads) | DistanceSq(point)[const] | Intersects(...)[const] (+12 overloads) | ProjectToAxis(axis,dMin,dMax)[const] | UniqueFaceNormals(out)[const] | UniqueEdgeDirections(out)[const] | ClosestPoint(point)[const] (+3 overloads) | ClosestPointToTriangleEdge(...)[const] (+1 overload) | RandomPointInside(rng)[const] | RandomVertex(rng)[const] | RandomPointOnEdge(rng)[const] | ToString()[const] | SerializeToString()[const] | SerializeToCodeString()[const] | Equals(rhs,epsilon)[const] | BitEquals(other)[const] | NumFaces()[static] | NumEdges()[static] | NumVertices()[static] | BarycentricInsideTriangle(uvw)[static] | Area2D(p1,p2,p3)[static] | SignedArea(point,a,b,c)[static] | IsDegenerate(p1,p2,p3,epsilon)[static] | IntersectLineTri(...)[static] | FromString(str,outEndStr)[static] (+1 overload) |
| Triangle::BarycentricUVSyntaxfloat2 Triangle::BarycentricUV(const float4 &point) const; [5 lines of code]Expresses the given point in barycentric (u,v) coordinates. Note There are two different conventions for representing barycentric coordinates. One uses a (u,v,w) triplet with the equation pt == u*a + v*b + w*c, and the other uses a (u,v) pair with the equation pt == a + u*(b-a) + v*(c-a). These two are equivalent. Use the mappings (u,v) -> (1-u-v, u, v) and (u,v,w)->(v,w) to convert between these two representations. Parametersconst float4 &point Return ValueThe factors (u,v) that satisfy the weighted sum equation point == a + u*(b-a) + v*(c-a). See Also BarycentricUVW(), BarycentricInsideTriangle(), Point(). |